
See	discussions,	stats,	and	author	profiles	for	this	publication	at:
https://www.researchgate.net/publication/221313989

Heaviest	Increasing/Common
Subsequence	Problems.

Conference	Paper	·	April	1992

DOI:	10.1007/3-540-56024-6_5	·	Source:	DBLP

CITATIONS

48

READS

220

2	authors,	including:

Guy	Jacobson

AT&T

20	PUBLICATIONS			692	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Guy	Jacobson	on	16	November	2015.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/221313989_Heaviest_IncreasingCommon_Subsequence_Problems?enrichId=rgreq-77c486185570216d861d7b993b86f22c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTMxMzk4OTtBUzoyOTYyNjA3OTI3OTkyMzNAMTQ0NzY0NTQ4NTk2Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221313989_Heaviest_IncreasingCommon_Subsequence_Problems?enrichId=rgreq-77c486185570216d861d7b993b86f22c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTMxMzk4OTtBUzoyOTYyNjA3OTI3OTkyMzNAMTQ0NzY0NTQ4NTk2Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-77c486185570216d861d7b993b86f22c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTMxMzk4OTtBUzoyOTYyNjA3OTI3OTkyMzNAMTQ0NzY0NTQ4NTk2Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guy_Jacobson?enrichId=rgreq-77c486185570216d861d7b993b86f22c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTMxMzk4OTtBUzoyOTYyNjA3OTI3OTkyMzNAMTQ0NzY0NTQ4NTk2Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guy_Jacobson?enrichId=rgreq-77c486185570216d861d7b993b86f22c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTMxMzk4OTtBUzoyOTYyNjA3OTI3OTkyMzNAMTQ0NzY0NTQ4NTk2Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/AT_T?enrichId=rgreq-77c486185570216d861d7b993b86f22c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTMxMzk4OTtBUzoyOTYyNjA3OTI3OTkyMzNAMTQ0NzY0NTQ4NTk2Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guy_Jacobson?enrichId=rgreq-77c486185570216d861d7b993b86f22c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTMxMzk4OTtBUzoyOTYyNjA3OTI3OTkyMzNAMTQ0NzY0NTQ4NTk2Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guy_Jacobson?enrichId=rgreq-77c486185570216d861d7b993b86f22c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTMxMzk4OTtBUzoyOTYyNjA3OTI3OTkyMzNAMTQ0NzY0NTQ4NTk2Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Heaviest I n c r e a s i n g / C o m m o n Subsequence
Problems

Guy Jacobson and Kiem-Phong Vo

AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

Abs t rac t . In this paper, we define the heaviest increasing subsequence (HIS)
and heaviest common subsequenee (HCS) problems as natural generalizations
of the well-studied longest increasing subsequence (LIS) and longest common
subsequence (LCS) problems. We show how the famous Robinson-Schensted
correspondence between permutations and pairs of Young tableaux can be
extended to compute heaviest increasing subsequences. Then, we point out
a simple weight-preserving correspondence between the HIS and HCS prob-
lems. ~From this duality between the two problems, the Hunt-Szymanski
LCS algorithm can be seen as a special case of the Robinson-Schensted al-
gorithm. Our HIS algorithm immediately gives rise to a Hunt-Szymanski
type of algorithm for HCS with the same time complexity. When weights are
position-independent, we can exploit the structure inherent in the HIS-HCS
correspondence to further refine the algorithm. This gives rise to a specialized
HCS algorithm of the same type as the Apostolico-Guerra LCS algorithm.

1 Introduction

Given a sequence c~ over some linearly ordered alphabet, the longest increasing subse-
quence (LIS) problem is to find a longest subsequence of cr that is strictly increasing.
Given two sequences a and ~ over some general alphabet, the longest common sub-
sequence (LCS) problem is to find a longest sequence ~/that is a subsequence of both
a and ~.

Both the LIS and LCS problems have venerable histories. The LIS problem
arises in the study of permutations, Young tableaux and plane partitions. These
objects play central roles in the representation theory of the symmetric group ini-
t iated by Young[25] and MaeMahon in the early part of the century. In 1938,
Robinson[16] found an explicit correspondence between permutat ions and pairs of
Young tableaux. This correspondence was rediscovered in 1961 by Schensted[18]
who extended it to general integer sequences. There are many interesting results
concerning the Robinson-Schensted correspondence. The reader is referred to other
papers[20, 5, 22, 12] for more details. Schensted's main motivation was to compute an
LIS from a given sequence of integers. This can be done by specializing the algorithm
to compute only the left-most column of the Young tableau. Fredman[4] has shown
that O(nlog n) t ime is required to compute an LIS. Thus, the Robinson-Schensted
algorithm is optimal for LIS. In a different guise, LIS can be used to compute a
largest stable set for a permutat ion graph[6]. In this guise, LIS has a ready general-
ization: computing a heaviest stable set for a permutat ion graph whose nodes have

53

non-uniform weights. This is a special case of the heaviest increasing subsequence
(HIS) problem: Given a sequence over some linearly ordered alphabet and a weight
function on the symbols and their positions in the sequence, find a subsequence with
the heaviest sum of weights. We shall show how to generalize the Robinson-Schensted
algorithm to compute an HIS in O(n log n) time.

The LCS problem was first studied in the context of the string-to-string correction
problem. Wagner and Fischer[23] solved this problem using dynamic programming
in quadratic time and space. Since then, LCS has found many practical applications:
CRT screen updates, file differential comparison, data compression, spelling correc-
tion, and genetic sequencing[17]. It was the CRT screen update problem that led
one of us (Vo) in 1983 to look into a weighted extension for LCS called the min-
imal distance LCS (MDLCS) problem. Here, a typical screen update involves two
screens, the current one, and the desired one. The update algorithm must match
the screen lines and issue hardware line insertion/deletion to align matched lines. To
reduce screen disturbance, it is desirable that matched lines that are closely aligned
be given preference over other matches. Thus, the minimal distance weight func-
tion assigns higher weights to closely aligned matched lines. The MDLCS problem
is to find among all LCS's one that minimizes the total distances of all matched
lines. Therefore, the MDLCS weight function combines the length of the common
subsequence and the distance between their matches. This is an example of a class
of general weight functions that assign values from some ordered additive monoid
to common subsequences based on both matched symbols and their positions in
the original sequences. The heaviest common subsequence (HCS) problem is to find
common subsequences that maximize such weights. The dynamic programming al-
gorithm is easily extended to solve HCS. This algorithm was implemented in the
curses screen update library distributed with System V UNIX systems[21].

Aho, Hirschberg and Ullman[1] showed that quadratic time is needed to find the
length of an LCS when the computation model allows only equal-unequal compar-
isons. On the other hand, in a more general computation model, Fredman's lower
bound for the LIS problem gives a lower bound of O(n log n) for computing the LCS
of two sequences of length n. This can be seen as follows. Let ~r be a permutation
of the integers from 1 to n. A LCS between ~r and the sequence 1, 2 , . . . , n is also
an LIS of ~r. The first general subquadratic algorithm for LCS was found by Masek
and Patterson[13], who employed a "Four-Russians" approach to solve the problem
in O(n2/log n) for finite alphabets and O(n 2 log log n~ log n) for a general alphabet.
The question of whether O(n log n) is a tight bound for the LCS problem is still
open.

More recent work on the LCS problem focused on finding general algorithms
whose efficiency is a function of certain.characteristics of the problem instance.

Hunt and Szymanski[10, 11] gave an O((r + n) logn) algorithm where r is the
total number of matches; a match is an ordered pair of positions (i, j) such that
ai = /?j. This is efficient when the matches are sparse. Apostolico and Guerra[2]
improved on the Hunt-Szymanski algorithm and described an O(d log n) algorithm
where d is the number of dominant matches; a dominant match is an ordered pair
(i,j) such that ai = flj and every LCS of the prefixes a l . . . a ~ and/71"" "flj has ai
as its final symbol. The quantity d is important because the number of dominant
matches can be much smaller than the number of matches.

54

Another line of research into LCS seeks an algori thm that is fast when a and
fl are similar. This is practical, for example, if they are two versions of a text file.
Myers[14] describes an O(nA) t ime algorithm, where A is the edit distance between
the two strings (with unit cost insertion and deletion). Interested readers should see
the work of Hirschberg[8], Nakatsu et al.[15], Hsu and Du[9], Wu et a1,[24], and Chin
and Pooh[3] for other approaches.

The LIS and LCS problems are closely related. In fact, both the Hunt-Szymanski
and Apostol ico-Guerra algorithms are implicitly based on a correspondence between
increasing and common subsequences. We shall state explicitly this bijective cor-
respondence and note that it is weight-preserving. This allows us to map common
subsequence problems to increasing subsequence problems and make use of the ma-
chinery in the Robinson-Schensted correspondence. It can be seen f rom this that
the Hunt-Szymanski LCS algori thm is only a special case of the Robinson-Schensted
algorithm. Then, it is easy to see how the inherent structure in the LCS problem can
be exploited in the mapping to tune the Hunt-Szymanski algorithm. This refinement
results in the Aposto]ico-Guerra LCS algorithm. In fact, this process of discovery
uncovers a bug in the original description given by Apostolico and Guerra. Finally,
applying our extension of the Robinson-Schensted algori thm for comput ing HIS, we
derive fast algorithms for computing HCS.

2 B a s i c D e f i n i t i o n s a n d N o t a t i o n s

To make the paper self-contained, in this section, we give all the basic definitions
and specify conventions for how the algorithms will be presented.

2.1 S e q u e n c e s a n d S u b s e q u e n c e s

Let r = r162 ' " r be a sequence over some alphabet A. We shall use r to denote
the i th symbol of cr, and r to denote the contiguous subsequence consisting of
symbols in positions from i to j . A sequence v" is called a subsequence of r if there
is a sequence of integers il < /2 < "'" < il such that T is equal to o'i1r "" '~riz.
If the alphabet A is linearly ordered, we say tha t 7- is an increasing subsequence if
vl < v2 < .-- < r~. Given two sequences oe and/3, a sequence 3' is called a common
subsequence of a and /3 if it is both a snbsequence of c~ and a subsequence of ft.
T h a t is, there are two sequences of integers il < i2 < .. �9 < il and Jl < j2 < �9 " �9 < j~
such tha t 3' is equal to oei l~i=. . .a i , and fljlflj2"" "/3j,"

2.2 D o m i n a n t M a t c h e s vs. E d i t D i s t a n c e

A number of modern LCS algorithms have their complexity based on either the edit
distance or the number of dominant matches. The edit distance between the strings

and /3 is the min imum number of character insertions and deletions required to
t ransform a to ft. Let the strings a and/3 have a LCS of length p and an edit distance
or a . We will always have + 1/31 = 2p + a , because each symbol in or/3 but
not in the LCS increases the edit distance by one.

55

Now, define a match (i, j) of the two letters a~ =/? j to be dominant if every LCS
of al...i and fll...j must end at positions i and j . Following standard conventions, we
denote the total number of matches by r and the number of dominant matches by
d. Other authors[9, 2] have observed that d can be much smaller than r, especially
when the two strings are very similar. We will now make this observation rigorous
by proving a bound on d based on the edit distance A.

Let p(i, j) denote the length of the LCS of prefixes al...~ and 81...j ; similarly let
A (i , j) denote the edit distance between the prefixes al...i and ~l...j. Say that a
dominant match (i, j) is k-dominant if p(i, j) = k.

T h e o r e m 1. The number of dominant matches d <_ p (A + 1).

Proof. Suppose there are dk k-dominant matches. Sort them by increasing values of
i: { (i l , j l) , (i2,j2), . . . , (idk,jdk)} where il < i2 < . . . < idk and Jl > j2 > "'" > jd~.
Now because the i's are strictly increasing integers and the j ' s are strictly decreasing,
i z - i l > l - l a n d j t - j d ~ > _ d k - l .

Now consider the edit distance A(ii , jr):

A(i~,j~) = il + jl -- 2p(il , j l) = iz + jl -- 2k.

Because (i l , j l) is a k-dominant match, il _> k and similarly, Jdk >_ k. So

zi(il, jl) >_ il + jz - il - Jdk

rearranging:

zS(i~,jz) >_ (il - il) + (jl -Jdk)"

Now we can use the inequalities derived earlier to get:

A(i t , j l) >_ (l -- 1) + (dk - l) = dk - 1.

Now consider the particular value of k with the largest number of k-dominant
matches. A LCS of a and ~ can be constructed using only dominant matches, and
then it must use one of these k-dominant matches, say (iz,j~). Now if (it , j l) is a
match that is used in the LCS o f ~ and 8, then A _> A(it , j~) . Therefore A + 1 _ da.
Now since dk is at least as great as any other dl, for 1 _< 1 _< p then pdk >_ d.
Combining these two inequalities, we get p(A + 1) > d.

A corollary of this theorem is that Apostolieo and Guerra's O(dlog n) LCS algo-
r i thm is also bounded by O (n l o g n A) time, and so is never more than a log factor
slower than Myer's O (n A) algorithm.

2.3 O r d e r e d A d d i t i v e M o n o i d s as W e i g h t S y s t e m s

As we have seen with the minimM distance LCS problem, the weight of a matched
pair of symbols may not be just a simple value but can be made up from different
components. For MDLCS, the components are the length of a common subsequence
and a weight based on the distance among matched symbols as measured by their
positions in the given sequences. Therefore, it is necessary to talk about more general
weight systems. To this end, we define a class of objects called ordered additive
monoids. An ordered additive monoid is a triple (M, +, <) such that:

56

1. M is a set with a distinguished element 0.
2. For a l l x E M , x + 0 = x .
3. For all x , y E M , x + y = y+ x E M.
4. Forallx, y, z E M , (x + y) + z = x + (y + z) .
5. M is linearly ordered with respect to _<.
6. For all x, yE M,x < x + y and y _< x + y .

A simple example of an ordered additive monoid is the non-negative real numbers.
A more nontrivial example is the monoid defined on the power set 2 s of a given
set S. In this case, + is set union, and _< can be taken as any linear extension of
the part ial order on 2 s defined by inclusion. As seen with the MDLCS problem, of
interest to us is the fact that given two ordered additive monoids (M, +M, <__M) and
(N, +N, _<N), we can construct a new ordered additive monoid on the set M x N
by defining for all (u, v) and (x, y) in M x N:

1. v) + (x, y) = v+uy) .
2. (u,v) < (x,y) if U<MX or u = x and vSgy .

As MDLCS suggested, we need to consider weight functions tha t depend on both
symbols and their positions. Let N be the non-negative integers. Let A be an al-
phabet and M be an ordered additive monoid. Let M + be the set of non-zero
elements of M. For increasing subsequence problems, a weight function is a map
co : N x A ~-+ M +. The weight of a sequence ~ over A is defined as Y~]l<k<l c0(k, ak).

For common subsequence problems, there are two involved sequences over the
alphabet A, c~ and r A weight function is a function w : N x N x A ~+ M + where
M is again some ordered additive monoid. The weight of a common subsequence ~,
is defined as: ~ l < k < l w(ik,jk, %). Here ik and jk are the indices of matched pairs
as they appear in the original sequences a and/3.

It is not hard to see that the dynamic programming method for LCS can be
extended to solve the HCS problem. Let ~'~ij be the weight of an HCS of al...i and
/31...j. Define w~j as 0 if ai 76 /3j and w(i,j, ce~) if the two symbols are the same.
Below is the recursion to compute f2ij:

a'-21j = max(X'2i_l,j, 12i,j_l, ~"~i--l,j-1 q- Wij)

2.4 Algorithm Presentat ion

We shall present algorithms in a pseudo-C syntax. Each algori thm is described with
line numbers which are used in subsequent discussions. Frequently, we need to deal
with ordered lists. Given a list L of objects of certain type, we shall require the
following operations on L:

i n s e r t (L, o) : insert the object o into the list L.
d e l e t e (L , o) : delete the object o from the list L.
n e x t (L , o) : find the least element strictly larger than o in L.
p r e y (L , o): find the largest element strictly smaller than o in L
max(L): find the maximal element in L.
rain(L): find the minimal element in L.

57

An impor tan t note on these list operations is that , using balanced tree structures,
they can all be performed in O(log n) t ime where n is the number of objects involved.
In practice, we use splay trees[19]. They are simple to implement, use less space, and
work just as well as balanced trees. In the algorithms, r will s tand for some undefined
object. C programmers may think of this as the NULL pointer. The operations n e x t () ,
p r e y () , max() and rain() when not defined will return r n e x t () and p r e y () do
not require tha t the argument object be already in L but it has to be of the right
type. For convenience, nex t (L , r is equivalent to min(L) . Similarly, p r e v (L , r is
equivalent to max (L).

3 Computing a Heaviest Increasing Subsequence

The Robinson-Schensted algorithm computes a pair of tableaux from a sequence.
For the purpose of computing an LIS, we don ' t need the entire algorithm, only the
par t that computes the left-most column of the left tableau. Figure 1 shows the
simplified LIS algorithm.

I. lis (cq~2 �9 �9 �9 ~n)

2. { L = r
3. for(i = I; i <= n; i = i+l)

4. { s = prev(L,ai) ;

5. t = next(L,s);

6. i~ (t ~= r
7. delete (L,t) ;

8. insert (L, o~i) ;

9. node [(ri] = newnode (ffi, node [s]) ;

I0. }

II. }

Fig. 1. The Robinson-Schensted LIS algorithm

R e m a r k s on F igure 1
2 : This line initializes the left-most column L of the Young tableau.
4: This line computes an element s in L where the current symbol can be appended

while maintaining the invariant that L is strictly increasing.
5-7: These lines replace the element after s with r In tableau parlance, t is bumped

by ~n.
8: node is an auxiliary array that, for each element in L, contains a record of an

element that precedes this element in an increasing subsequence. The function
newnode () constructs such records and links them into a directed graph. At the
end of the algorithm, we can search from the maximal element of L to recover an
LIS of c~.

Note that in the l i s () algorithm, at any given time, the length of an LIS of the
prefix of ~r considered thus far is kept implicitly as the height of the list L. For the
weighted case, we must mainta in the weight of an HIS of a prefix explicitly. Thus, tile
elements of L are pairs (s, w) with s E o" and w is the total weight of an HIS ending

58

with s. We main ta in the invariant t ha t L is s t r ict ly increasing in bo th coordinates.
Therefore, the ordering based on their first coordina te (the a lphabe t ordering) can
be used to order L. Figure 2 shows the HIS algori thm.

1

2
3
4

5
6
7
8

9

lO
11.
12
13
14
15
16
17 }

his(#1~2 �9 �9 �9 ~n, [2)

{ L--+;

for(i = i; i <= n; i = i+I)

{ (s,v) = prev(L,(~i,O));

(t ,w) = n e x t (L , (s , v)) ;
while((t,w) != r
{ if(v+n(i,~i) < w)

break ;

delete (L, (t,w)) ;

(t,w) = next(L,(t,w));
}
if((t,w) == ~b II ~i < t)

{ insert (L, (~i, v+s ~i))) ;

node [~i] = newnode (~i, node Is]) ;
}

}

Fig. 2. A O(n log n) HIS algorithm

R e m a r k s on F i g u r e 2
4: p rey() computes the largest element (s ,v) in L such that s is strictly smaller

than r This means that r can be appended to any increasing subsequence
ending at s to define a new increasing subsequence. If there is no such (s ,v) , we
define v to be 0.

5-15: These lines replace lines 5-9 of the l i s () algorithm. Bumping is done in the
whi le() loop between lines 6-11. This ensures the invariant that the second
coordinates of objects in L are strictly increasing. Line 12 tests to see if (r v +
f2(i, r can be inserted into the list L while maintaining the invariant that the
first coordinates of objects are strictly increasing. This test is needed because our
weight function is also based on the indices of symbols. It can be omitted if the
weight function only depends on the symbols. Line 13 does the actual insertion.
Line 14 constructs a record so we can recover an actual HIS when the algorithm
terminates.

To see how the a lgor i thm runs, consider the sequence 9,2,6,1,1,2,5 in which all
elements have their integral values as weights except tha t the first 1 has weight 2.
Below is the progression of the list L as elements are processed:

9 2 6 1 1 2 5
9,9 2,2 2,2 1,2 1,2 1,2 1,2

9,9 6,8 6,8 6,8 2,4 2,4
9,9 9,9 9,9 6,8 5,9

9,9

59

Now, consider the list L after each iteration of the f o r (; ;) loop. For convenience,
we shall use Li to denote the state of L after the i th iteration. Each element (s , v)
on L defines an increasing subsequence ending at s by tracing the links created on
line 14. We shall say that this sequence is defined by s.

We claim tha t for every increasing subsequence s l s 2 . . . s k of rrl...i, there is an
element t < sk in Li tha t defines an increasing subsequence tha t is at least as heavy
as s i s2 . �9 sk. From this, it follows that the maximal element of Li defines an HIS of
(rl...i. Thus, when the algori thm ends, the maximal element of L defines an HIS for
the entire sequence rr.

We prove the claim by induction on i , the index variable of the f o r (; ;) loop.
The case i--1 is clear. Now, assume the assertion for i - 1 and consider an increasing
subsequence s i s 2 . . . s k of r r l - . . i . Consider the case when sk = ~ri. By induction,
there is an element t _< sk-1 in Li-1 that defines an increasing sequence that is at
least as heavy as S l " " sk- t . Since t < r t cannot be bumped off L on lines 6-11.
After the ith iteration, either 0"i was inserted into L or it is already in L. Since L is
strictly increasing in the weights, the sequence defined by rr~ satisfies the claim. So,
assume tha t sk # o'i. Now there are two cases. The case sk < r follows immediate ly
since the par t of L preceding o'i is unchanged in the i th iteration. Assume sk > c~i,
by the induction hypothesis, there is a sequence defined by some t in Li-1 that is
at least as heavy as s l . . . s k . Now, either t is still in L~ and we are done, or t was
bumped off L in the t~h i l e () loop of lines 6-11. In this case, the i f () s ta tement of
line 7 guarantees that the sequence defined by c,~ will be at least as heavy as the
sequence defined by t (in the i - 1st step). This complete the proof of the claim.
Therefore, the algorithm h i s () is correct.

To analyze the t ime complexity of hi.~ () , we observe tha t all operations in each
iteration of the f o r (; ;) take O (log n) time. Since the loop iterates n times, the total
t ime is O(n log n). We have proved:

T h e o r e m 2. Let ~ be a sequence over a linearly ordered alphabet A and $2 a weight
function from A to some ordered additive monoid M . Algorithm h i s (c~,/2) computes
a heaviest increasing subsequence of c~ in t ime O(n log n) where n is the length of ~.

4 Comput ing a Heaviest Common Subsequence

Let N be the set of ha tura l numbers. A biletter is an element of the set N x N.
Given an instance of a common subsequence problem, i.e., two sequences over some
alphabet A, a = a l a 2 - " a m and /3 = /~1/72""/?~, we can construct f rom these
sequences a corresponding biword (sequence of biletters) as in Figure 3.

For example, given the sequences abaz and baba, b i w o r d (a b a c , b a b a) will con-
struct the biword:

1 1 2 2 3 3
4 2 3 1 4 2

It is not hard to see by induction on i that every common subsequence of a and
/3 maps to an increasing subsequence of t h e lower word of the biword. On the other
hand, given an increasing subsequence of the lower word of the biword, it is easy to
invert the indices and retrieve a common subsequence between a and/3.

60

1. biword(~,fl)

2.{
3.

4 .

5 .

6.

7.

e . }

B = 4;
for(i = I; i <= m; i = i+l)

{ Let P be the list of positions of ~i in ~;

for(k = max(P); k != 4; k = prev(P,k))

append (i,k) to B;
}

Fig. 3. The HCS-HIS correspondence

Let ~ : N • N • A ~-> M be a weight function. We assign the weight of a matched
pair of symbols to the lower part of the corresponding biletter. Then, b iword() is
a weight preserving function that maps bijectively every common subsequence of

and ,8 to an increasing subsequence of the corresponding biword with the same
weight.

Applying the h i s () algorithm from the last section to the lower part of the
biword, we immediately have an algorithm for computing HCS. Of course, in practice
there is no need to ever construct the biword explicitly. It can be generated from
the lists of positions in /3 of the given symbols. The Hunt-Szymanski algorithm
is essentially l i s () where the biword is constructed on the fly. Figure 4 shows
h c s l () , an algorithm for HCS. In the same way that h i s () is a generalization of
the Robinson-Schensted algorithm l i s (), this algorithm is a generalization of the
Hunt-Szymanski algorithm.

The correctness of h c s l () follows immediately fl'om that of h i s () and the dis-
cussions on the correspondence. The run time of h c s l () depends on r, the total
number of matches between c~ and/3, and the size of the list L which is less than
rain(n, m). Assume that n < m, we have:

T h e o r e m 3. Let a and/3 be two given sequences over an alphabet A . Let [2 : N •
N • A ~4 M be a weight function. Algori thm h c s i (a , t 3 , ~) computes a heaviest
common subsequence between ~ and/3 in time O((r + -~)log n).

To see the algorithm working, consider the sequences abca and aabd. Let the
weight of a matched symbol at positions i and j be the ordered pair (1, 4 - li - Jl).
For example, the weight of the match of the symbol b is (1, 3). This is the MDLCS
weight function. The corresponding biword is:

1 1 2 4 4
2 1 3 2 1

Below is the progress of the list L as the biletters are processed. The algorithm
shows that the HCS is the sequence ab at positions 1,2 of abca and at positions 1,3
of a a b d .

(1,2) (1,1) (2,3) (4,2) (4,1)
2,(1,3) 1,(1,4) 1,(1,4) 1,(1,4) 1,(1,4)

3,(2,7) 3,(2,7) 3,(2,7)

61

I.

2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
i5 .
16.
17.
18.
19.
20.

hcsl (ai~2 -.- am ,~IZ2 " �9 �9 ~, ~2)

{ for(i = I; i <= n; i = i+l)

insert (Position[~i] , i) ;

L = r
for(i = 1; i <= m; i = i+l)

{ P = Position[~i] ;

for(j = max(P); j != r

{

}
}

}

j = p r e v (P , j))
(s , v) = p r e v (L , (j , 0)) ;
(t ,w) = n e x t (L , (s , v)) ;
whi le ((t ,w) != r
{ i f (v+r2 (i , j , c~) < w)

b reak ;
d e l e t e (L , (t ,w)) ;
(t ,w) = nex t (L , (t ,w)) ;

}
if((t,w) := r I I j < t)

insert (L, (j ,v+D(i,j~i))) ;

Fig , 4. An O(r log n) HCS algorithm

R e m a r k s on F i g u r e 4
2-3 : For each symbol in/~, an ordered list of its positions is constructed.
4: This fine initializes the fist L as in algorithm h i s () . Each object to be stored in L

compose from the lower part of a biletter (i.e., the matched index in ~) and the
weight of some corresponding common subsequence defined by this symbol.

5-7 : Here, the two f o r (; ;) loops essentially construct the corresponding biword on
the fly. Note that the decreasing order processing of indices of matched symbols
on line 7 is crucial for the correctness of the algorithm. This points out a bug
in the original Apostolico-Guerra algorithm which traverses the fists of matched
indices in increasing order.

8-17: These fines are straightforward translation of fines 4-15 in algorithm h i s () . For
clarity, we omit ted the construction of the linked fist to retrieve an HCS. Note
that on line 8, the function call p r e y (L , (j ,0)) works because we are assuming
that the implementation orders L by the matched indices only, not the weights.
The whi le () loop on lines 10-15 ensures that the weights are strictly increasing
on L.

5 Tuning the HCS Algor i thm

T h e a l g o r i t h m h c s 1 (o~,/?, r2) can be t uned fu r the r if we know more a b o u t the weight
func t ion D. This sect ion considers a few m a i n cases in which weights are known to
follow some regular pa t t e rns . The c o m p l e x i t y analyses of the t u n e d a l g o r i t h m s is
based on weighted dominant matches which are defined as follows: A m a t c h o~i = / ? j

is d o m i n a n t if every HIS of a l . . . i a n d / ? l . j m u s t end at o~ a n d / ? j . Aga in , fol lowing
s t a n d a r d convent ions , we let d be the t o t a l n u m b e r of weighted d o m i n a n t ma tches .

Recal l f rom sect ion 2 t ha t if ~2ij is defined as the weight of a HIS be tween C~l...i

62

and/31..4, then f2ij = max(~i-l,j, f2i,j-l,wlj) where wij is C2i-l,j-1 if al 76/3j or
C2i_ 1,j-1 +w (i, j, ai) if they are equal. It can be seen easily by induction that a match
is dominant whenever ~ j is defined by wij. That is, a match ai =/~j is dominant
when wlj > $21-1,j and wlj > ~Qi,j-1.

Assume an instance of the HCS problem with sequences a , /3 , and weight func-
tion C2. We say that S? is /3-decreasing, if for every symbol in a, the weights of its
matches are decreasing (but not necessarily strictly decreasing) as they appear from
left to right in /3. On the other hand, if for every symbol in a, the weights of its
matches in/3 strictly increase from left to right, we say that S? is •-increasing. We
similarly define a-decreasing and a -increasing. The below result follows from a sim-
ple induction. It shows that algorithm hcs 1 () runs in O(dlog n) for weight systems
that are increasing.

T h e o r e m 4 . If the weight function f2 is c~-increasing and fl-increasing, then every
match is a dominant match.

The rest of this section shows tunings of the algorithm based on whether or not
the weight functions are a-decreasing,/?-decreasing or both. We shall state conditions
when the algorithms perform in O(d log n) time.

5.1 C o m p u t i n g H C S f o r / 3 - D e c r e a s i n g W e i g h t s

In this case, let s and j be defined as on lines 7-8 of algorithm h o s t () . The reverse
order insertion of the sequence s < j l < "'" < jk = j eventually amounts to the
insertion of just j l since it is heaviest. This means that intermediate insertions can
be avoided by directly computing j l . Figure 5 shows the modified HCS algorithm.
Line 10 is the new addition to algorithm h c s l () .

T h e o r e m 5. If the weight function $2 is/3-decreasing and a-increasing, then algo-
rithm hc s2 () runs in O(dlogn) time.

5.2 C o m p u t i n g H C S for a - D e c r e a s i n g W e i g h t s

In this case, consider lines 8-9 of algorithm h c s l () . If j is currently on the list L,
these lines will define t to be j . If the element immediately precedes j in L has not
changed since j was inserted into L, then because the weight of the new j is less than
the one already in L, lines 10-17 will leave L unchanged. This means that when an
element j is inserted into L, we can delete it from its position list to avoid duplicate
processing. However, we must insert it back into the position list if it gets removed
from L or if its predecessor in L ever changes. Figure 6 shows the modified algorithm.

T h e o r e m 6. If the weight function (2 is a-decreasing and fl-increasing, then algo-
rithm hc s3 () runs in O(dlogn) time.

63

1. hcs2 (ala2 �9 - - a,~,/91~ - - �9 ~,~, t2)
2. { for(i = i; i <= n; i = i+l)

3. insert (Position[/gJ, i) ;

4. L - - r
5. for(i = I; i <= m; i = i+l)

6. { P = Position[~i];

7. f o r (j = max(P); j != 4; j = p r ev (P , j))
8. { (s,v) = prev(L,(j,O));

9. (t,w) = next(L,(s,v));

I0. j = next(P,s);

11. while((t,w) != r

12, { if(v+~2(i,j, ai) < w)
13. break;

14. delete(L, (t,w)) ;

15. (t,w) = next(L,(t,w));

16. }
17. i f ((t , w) == r]] j < t)
18. insert (L, (j ,v+S2(i, j, a~))) ;
19. }
20. }
21. }

Fig. 5. An HCS algorithm for decreasing weights in/9

5.3 C o m p u t i n g H C S W h e n W e i g h t s a r e P o s i t i o n - I n d e p e n d e n t

An important special case that finds many practical applications is when the weights
are dependent only on the symbols in the alphabet. In this case, both conditions of
algorithms hc s2 () and hc s3 () apply. Further, the test on line 16 of h c s l () is not
needed as we noted in the remarks following algorithm h i s () . Put t ing everything
together, we have algorithm hcs4 () (Figure 7) for computing an HCS when weights
are position-independent. When all weights are constant, h c s4 () reduces to the
Apostolico-Guerra LC$ algorithm.

5.4 C o n c l u s i o n s

In this paper, we defined the heaviest increasing subsequence and heaviest common
subsequence problems as natural generalizations of the longest increasing and longest
common subsequence problems. These problems are intimately related by a weight-
preserving correspondence. We showed how to generalize the Robinson-Sehensted
LIS algorithm to solve the HIS problem in O(n log n) time. Then using the weight-
preserving correspondence, we applied the new HIS algorithm to solve the HCS
problem in O(rlogn) time, where r is the number of matches. This algorithm is a
generalization of the Hunt-Szymanski LCS algorithm. We showed through a sequence
of simple refinements how to tune the HCS algorithm when weights followed certain
regular patterns. In particular, when weights are position-independent, our HCS
algorithm can be viewed as a generalization of the Apostolico-Guerra LCS algorithm.
Typically, computing an HCS may require much fewer matches than the entire set of

64

i. hcs3 (ala~... a,~ ,fii~2 "" fin, f2)

2. { for(i = I; i <= n; i = i+1)

3. insert (Position [fil] , i) ;

4 . L=~;
5. for(i = I; i <= m; i = i+l)
6. { P = Position[ai];

7. for(j = max(P); j != ~; j = prev(P,j))

8. { (s,v) = prev(L,(j,O));

9. (t,w) = next(L,(s,v));

I0. while((t,w) != ~)

It. { if(j < t)

12. insert (Position[fit] ,t) ;
13. if(v+Y2(i,j,a,) < w)
14. b r e a k ;
15. d e l e t e (L , (t ,w)) ;
16. (t,w) = next(L,(t,w));

17. }

18. if((t,w) == ~]l j < t)

19. { insert(L, (j ,v+/2(i,j, ~i))) ;

20. delete (P,j) ;

21. }

22. }

23. }

24 . }

Fig . 6. An HCS algorithm for decreasing weights in a

R e m a r k s o n F i g u r e 6
11-12: These lines implement the condit ion that a posit ion t on L must be reinserted

into its P o s i t i o n list if it gets bumped off L or if the element preceding it in L
changes.

20: This line removes j from its P o s i t i o n list after it gets inserted into L so that
r edundan t processing of j is avoided.

matches. We defined generalized dominant matches, and specified conditions under
which all of our HCS algorithms would run in O(dlog n) time where d is the number
of dominant matches.

The Robinson-Schensted LIS algorithm is central in the combinatorial theory of
tableaux and plane partitions. Our extension of the algorithm indicates that many of
the interesting results in the theory may extend. Of even more interest is the weight-
preserving correspondence between the HIS and HCS problems. In future work, we
hope it will show new ways in using the machinery of tableau and plane partition
theory to find out more about the structure of common subsequence problems.

65

i.

2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22. }

h c s 4 (a l a 2 . . . a m , f l l f l 2 ---fin,/2)
{ for(i = I; i <= n; i = i+l)

insert (Posit ion [~i] , i) ;

L = r
for(i = I; i <= m; i = i+l)

{ P = Position[~i] ;

for(j = max(P); j != r j = prev(P,j))

{ (s,v) = prev(L,(j,O));

(t,w) = next(L,(s,v));

j = next(P,s);

while ((t ,w) != ~)

{ insert (Position[~t] ,t) ;

if (v+S2(~) < w)

break ;

delete(L, (t,w)) ;

(t,w) = next(L,(t,w));

i n s e r t (L, (j ,v+/2(o~i))) ;
d e l e t e (P , j) ;

Fig. 7. An HCS algorithm for position-independent weights

References

1. A. V. Aho, D. S. Hirschberg, and J. D. Ullman. Bounds on the complexity of the
longest common subsequence problem. JACM, 23(1):1-12, 1976.

2. A. Apostolico and C Guerra. The longest common subsequence problem revisited.
Algorithmica, 2:315-336, 1987.

3. Francis Y. L. Chin and C. K. Poon. A fast algorithm for computing longest common
subsequences of small alphabet size. Journal of Information Processing, 13(4):463-469,
1990.

4. Michael L. Fredman. On computing the length of longest increasing subsequences.
Discrete Mathematics, lh29-35, 1975.

5. E. Gansner. Matrix Correspondences and the Enumeration of Plane Partitions. PhD
thesis, MIT, Cambridge, MA, 1978.

6. M. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.
7. Daniel S. Hirschberg. A linear space algorithm for computing maximal common sub-

sequences. CACM, 18(6):341-343, 1975.
8. Daniel S. Hirschberg. Algorithms for the longest common subsequence problem.

JACM, 24(4):664-675, 1977.
9. W. J. Hsu and M. W. Du. New algorithms for the LCS problem. JCSS, 29:133-152,

1984.
10. J. W. Hunt and M. D. McIlroy. An algorithm for differential file comparison. Computer

Science Technical Report 41, Bell Laboratories, 1975.
11. James W. Hunt and Thomas G. Szymanski. A fast algorithm for computing longest

common subsequences. CACM, 20(5):350-353, 1977.

66

12. D. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley, Reading,
MA, 1973.

13. William J. Masek and Michael S. Patterson. A faster algorithm computing string edit
distances. JCSS, 20:18-31, 1980.

14. Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorithmica,
1:251-266, 1986.

15. N. Nakatsu, Y. Kambayashi, and S. Yajima. A longest common subsequence algorithm
suitable for similar text strings. Acta Informatica, 18:171-179, 1982.

16. G. De B. Robinson. On the representations of the symmetric group. American J.
Math., 60:745-760, 1938.

17. D. Sankoff and J.B. Kruskal. Time Warps, String Edits and Macromolecules: The
Theory and Practice of Sequence Comparisons. Addison Wesley, Reading, MA, 1983.

18. C. Schensted. Largest increasing and decreasing subsequences. Canadian J. Math.,
13:179-191, 1961.

19. D. Sleator and R. Tarjan. Self-adjusting binary trees. JACM, 32:652-686, 1985.
20. R. Stanley. Theory and applications of plane partitions. Stud. Applied Math., 50:259-

279, 1971.
21. K.-P. Vo. More <curses>: the <screen> library. Technical report, AT&T Bell Labo-

ratories, 1986.
22. K.-P. Vo and R. Whitney. Tableaux and matrix correspondences. J. o] Comb. Theory,

Series A, 35:323-359, 1983.
23. R. A. Wagner and M. J. Fischer. The string-to-string correction problem. YACM,

21(1):168-173, 1974.
24. Sun Wu, Udi Manber, Gene Myers, and Webb Miller. An O(NP) sequence comparison

algorithm. Information Processing Letters, 35(6):317-323, 1990.
25. A. Young. The collected papers of alfred young. Math. Exp., 21, 1977.

View publication statsView publication stats

https://www.researchgate.net/publication/221313989

